首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16185篇
  免费   3051篇
  国内免费   1715篇
化学   6582篇
晶体学   227篇
力学   889篇
综合类   170篇
数学   874篇
物理学   12209篇
  2024年   11篇
  2023年   134篇
  2022年   293篇
  2021年   381篇
  2020年   475篇
  2019年   422篇
  2018年   440篇
  2017年   594篇
  2016年   705篇
  2015年   617篇
  2014年   956篇
  2013年   1355篇
  2012年   1024篇
  2011年   1171篇
  2010年   872篇
  2009年   1072篇
  2008年   1195篇
  2007年   1252篇
  2006年   1055篇
  2005年   871篇
  2004年   824篇
  2003年   710篇
  2002年   677篇
  2001年   576篇
  2000年   476篇
  1999年   427篇
  1998年   340篇
  1997年   266篇
  1996年   276篇
  1995年   252篇
  1994年   202篇
  1993年   148篇
  1992年   165篇
  1991年   107篇
  1990年   95篇
  1989年   78篇
  1988年   85篇
  1987年   58篇
  1986年   39篇
  1985年   49篇
  1984年   39篇
  1983年   20篇
  1982年   32篇
  1981年   33篇
  1980年   8篇
  1979年   15篇
  1978年   11篇
  1976年   10篇
  1974年   7篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 39 毫秒
1.
Acridone as a new kind of visible light photocatalyst has been developed to catalyze metal free atom transfer radical polymerization (ATRP). The photocatalyst possess low excited state potential as can undergo an oxidative quenching pathway to initiate ATRP of vinyl monomers. Kinetic study and light on/off reaction demonstrate the “living”/controlled nature of the polymerization by light. Block copolymers can be achieved by using PMMA as macroinitiator to reinitiate polymerization of other vinyl monomers, which shows highly preserved Br chain-end functionality in the synthesized polymers. Moreover, the polymerization can be conducted under air atmosphere as most photocatalysts need anaerobic condition, which may give inspiration of further application of this kind of photocatalyst.  相似文献   
2.
Cubic-like CaTaO2N photocatalysts with high crystallinity and uniform particle size were successfully prepared by the flux-assisted nitridation method. The growth of CaTaO2N single crystals under different synthesis conditions was systematically investigated to understand the effects of the crystallinity and optical property on photocatalytic performance of CO2 reduction. Moreover, the modification of CaTaO2N single crystals with core-shell Ni−Ag bicomponent cocatalyst by two-step decoration process gave a 2.4 times higher amount of CO evolution than the deposition of sole Ag cocatalyst, because of the synergistic effects of bicomponent cocatalyst on the interfacial electron transfer and surface catalytic process. This study provides a valuable way to construct high-crystalline photocatalysts with effective bicomponent cocatalyst for visible-light-driven CO2 reduction with H2O.  相似文献   
3.
Computational modeling of the optical characteristics of organic molecules with potential for thermally activated delayed fluorescence (TADF) may assist markedly the development of more efficient emitting materials for organic light-emitting diodes. Recent theoretical studies in this area employ mostly methods from density functional theory (DFT). In order to obtain accurate predictions within this approach, the choice of a proper functional is crucial. In the current study, we focus on testing the performance of a set of DFT functionals for estimation of the excitation and emission energy and the excited singlet-triplet energy gap of three newly synthesized compounds with capacity for TADF. The emitters are designed specifically to enable charge transfer by π-electron conjugation, at the same time possessing high-energy excited triplet states. The functionals chosen for testing are from various groups ranging from gradient-corrected through global hybrids to range-separated ones. The results show that the monitored optical properties are especially sensitive to how the long-range part of the exchange energy is treated within the functional. The accurate functional should also be able to provide well balanced distribution of the π-electrons among the molecular fragments. Global hybrids with moderate (less than 0.4) share of exact exchange (B3LYP, PBE0) and the meta-GGA HSE06 are outlined as the best performing methods for the systems under study. They can predict all important optical parameters correctly, both qualitatively and quantitatively.  相似文献   
4.
High-reflective multilayer laser coatings are widely used in advanced optical systems from high power laser facilities to high precision metrology systems. However, the real interface quality and defects will significantly affect absorption/scattering losses and laser induced damage thresholds of multilayer coatings. With the recent advances in the control of coating design and deposition processes, these coating properties can be significantly improved when properly engineered the interface and defects. This paper reviews the recent progress in the physics of laser damage, optical losses and environmental stability involved in multilayer reflective coatings for high power nanosecond near-infrared lasers. We first provide an overview of the layer growth mechanisms, ways to control the microstructures and reduce layer roughness, as well as the nature of defects which are critical to the optical loss and laser induced damage. Then an overview of interface engineering based on the design of coating structure and the regulation of deposition materials reveals their ability to improve the laser induced damage threshold, reduce the backscattering, and realize the desirable properties of environmental stability and exceptional multifunctionality. Moreover, we describe the recent progress in the laser damage and scattering mechanism of nodule defects and give the approaches to suppress the defect-induced damage and scattering of the multilayer laser coatings. Finally, the present challenges and limitations of high-performance multilayer laser coatings are highlighted, along with the comments on likely trends in future.  相似文献   
5.
In the pursuit to enlarge the library of polyimide materials for energy applications, new polyimide/MWCNTs composite films have been developed by MWCNTs-assisted polycondensation reaction of a hydroxyl and triphenylmethane-containing diamine with benzophenone tetracarboxylic dianhydride targeting to highlight their electrical storage capability as flexible electrodes in micro-supercapacitors (mSCs). The Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, UV–vis, fluorescence, and Raman spectroscopies were used to demonstrate the evolution of interfacial interactions between MWCNTs and the precursors (diamine monomer and intermediate polyamidic acid) and polyimide matrix that proved to be the origin of MWCNTs homogeneous dispersion. Thus, composite films incorporating 1, 3, 5, and 10 w.t.% MWCNTs were obtained and thoroughly investigated with regard to their morphology, mechanical behavior, thermal stability, and electrical conductivity. The electrochemical performance of these composites was first analyzed in a classical three-electrode cell by cyclic voltammetry and galvanostatic charge-discharge in both aqueous and organic electrolyte systems. By far, the best electrical storage capacity was obtained with the composite polyimide film containing 10% MWCNTs that was further used as both active material and current collector in a flexible symmetric mSC realized by a straightforward and low-cost procedure. In the attempt to better exploit the advantages of this composite film, it was layered with a graphite-containing paint and tested as an electrode in a flexible mSC, which provided satisfactory results. To our knowledge, this is the first report on the electrical charge storage capability of a polyimide/MWCNTs free-standing film as a flexible electrode in mSCs, which do not require time- and resource-consuming processing steps.  相似文献   
6.
本研究采用水热法,以柠檬酸为螯合剂,通过控制n(Sn4+)/n(Sn2+)的数值,合成了由具有丰富氧空位的SnO2纳米晶体组装成的微球。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)及UV-Vis漫反射光谱对SnO2纳米微球进行表征分析,结果表明:在酸性水热条件和柠檬酸的螯合作用下,二氧化锡纳米晶体聚集形成微球;在Sn4+/Sn2+摩尔比例为3:7时,其微球尺寸最小,整体分散性较好;同时适量二价锡离子的掺杂使得该样品氧空位浓度达到最佳,氧空位的存在将使得样品光吸收范围拓展至可见光,因而该样品显示出较强的可见光催化效率,在8 min内完全降解甲基橙。  相似文献   
7.
As the application of electrocatalyst continues to expand, envisaging the hidden mechanisms occurring at various length scale affecting the catalytic efficiency became important. To enhance the stability of electrocatalyst and reduce the cost, it is of paramount importance to reveal the active site's dynamics (using in situ techniques for getting the real-time information) which directly affect the reactions such as oxygen evolution reaction, hydrogen evolution reaction, and so on. Since such reactions are crucial for many engineering and scientific applications, in situ characterization techniques are required, which could capture such reactions happening at a different length and time scale. This article analyzes the recent progress made in the field of electrocatalyst's characterization using in situ neutron techniques. The article also paves the future path and has delineated the future challenges involved in multiscale correlative techniques (e.g., neutron techniques in the combination of synchrotron or microscopic techniques) used for getting the multiscale (atomic to micrometer range) mechanistic information about the electrocatalyst's working and degradation.  相似文献   
8.
近年来,机器学习等人工智能技术被应用于蛋白质工程,其在蛋白质结构、功能预测、催化活性等研究中具有独特优势。在未知蛋白质结构的情况下,将蛋白质序列和功能特性与机器学习相结合,基于序列-活性关系(innovative sequence-activity relationship,ISAR)算法,将蛋白质氨基酸序列数字化,用快速傅里叶变换(fast four transform,FFT)进行预处理,再进行偏最小二乘回归建模,可在数据集较少情况下拟合得到最佳模型。通过机器学习对紫色球杆菌视紫红质(gloeobacter violaceus rhodopsin,GR)的突变体蛋白质氨基酸序列与光谱最大吸收波长进行建模,获得了最佳模型。用最佳索引LEVM760106建模得到的确定系数R2 为0.944,均方误差E为11.64。用小波变换进行的预处理,其R2 虽也约为0.944,但E大于11.64,不及FFT进行的预处理。方法较好地解决了蛋白质序列与功能特性之间的数学建模问题,在蛋白质工程中可为预测更优的突变体提供支持。  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号